Project: Mapping phase of MAGIC

Submitted by: Rani Zand.
MAGIC's site: http://magicmapping.sourceforge.net

Backqground:

Genomes undergo changes that can dramaticallyt dfffe@roperties of the organisms.
These changes, referred to as mutations, can resaublutionary more fit organisms, or
cause fatal abnormalities. Mutations can be coadieided into two groups:

* Point mutations, affecting single nucleotides.

» Large-scale mutations, affecting long genomic segme
Whereas point mutations have been well studiedchadacterized (both on the
biomechanical level and the statistical-algorithieiel), investigating large-scale
mutations is more complicated as it requires segjugrand comparing whole genomes.
Yet, this comparison of the whole genomes, refetoess comparative mapping, is
important for evolutionary, genetic, and genomereeggement studies. Here, one is
usually interested in investigating the relatiobnwmen the genomic segments to establish
their evolutionary origin:
Are the segments orthologous, and hence were telddrom the organisms’ most recent
common ancestor? Are they paralogs, and hencedugteated from an ancestral
segment? Did the segments undergo reordering? iMeseegments deleted or inserted
and — if so — how (insertion sequence, prophagéparontal gene transfer)?

Most of the pioneering studies considered the gmbbf comparative mapping over sets
of genes instead of arbitrary genomic segmentssd heethods start, usually, by
calculating an all-against-all alignment of comnsets of genes (a preprocessing phase),
and then, in a second phase, use clustering tagsig predict operons or collinear
blocks. Recently, comparative mapping methods axgtrary genomic segments were
developed. The preprocessing phase in these metbodssts of searching for similar
genomic segments — referred to as hits, markemnahnors (usually performed by a fast
local alignment procedure). Then, in the mappingsegh a clustering procedure is applied
to the output of the first phase. Examples for $&std-based preprocessing phases
include BLASTZ and CHAQS, in which the seeds alevad to contain degeneracy, as
well as that of Mauve, which searches for exactuamdue matches. Examples for
mapping phases include CHAIN-NET, FISH, GRIMM-SynteMauve (as well as GRIL
— its predecessor), and SLAGAN. CHAIN-NET and GRIMBnteny use the distance
between anchors as a criterion for clustering (@mte referred to as distance-based
mapping methods). Mauve and SLAGAN rely on solvidifferent) optimization

problems to prune anchors and to define the map@h8GAN prunes anchors by
introducing various gap penalties for discrimingtbetween different subsets. Finally,
FISH is based on a statistical model for anchostelung.

In this project, MAGIC (a rearrangement of Integratand Accurate Comparative
Genome Mapping), which is a new approach for coatpar mapping (Swidan et. al.,
PLoS CB, 2006), is implemented in C++. Along witle {C/C++ implementation of the
pre-processing phase, and the Java graphicalntegfaice (GUI), this tool provides an
accurate, fast, and user friendly program for caingagenomes.

Project Relevancy

MAGIC's clustering approach is based on a new dejim of “consecutive homologous
segments” which relies on a biologically intuitivedering of similar segments. It enables
a better handling of duplications in general aroved to adequately address the problem
of “nuisance cross overlaps”, i.e., misleading Enties between duplications that
occurred before the most recent common ancestpgrircular. Nuisance cross overlaps
can introduce significant artifacts in the mappamgl, to the best of our knowledge, were
not taken explicitly into account before. MAGICalso robust with respect to both its
parameters’ values and the initial set of anchors.capable of modifying and refining
the mapping induced from the anchors, and evergrezimg and reassigning false
orthologs in the initial anchor set itself. Furtmere, MAGIC is scalable and can be
applied to distantly related pairs as well as tgdagenomes. Finally, MAGIC is

explicitly designed to handle circular genomescbmgsidering the last and first
nucleotides to be successive). MAGIC'’s output cetssof detailed coverage statistics of
the genomes and of several tables including a oroe table describing the reorder-free
segments.

By applying MAGIC to bacterial genomes and analgime results, Swidan et. al.
(2006) showed that lateral transfer and largetiele affect bacteria significantly more
than duplications. In addition, by applying statigk tests to these results, they
surprisingly showed that the breakpoint distribatitbs well to the uniform distribution
in most of the compared pairs.

For more information we refer the reader to (Swidaral., PLoS CB, 2006).

Description of the Algorithm:

The mapping phase’s input constitutes of a comprakie set of maximal similar
segments between two given genomes. Practicaitysét is represented as a table (see
Table 1 in the end of this document). This tablgaserated in the preprocessing phase.
A thorough description of its generation is givarthe preprocessing phase
documentations.

To describe MAGIC’s methodology for comparing tweemn genomes, we present first
the following notation (an overview of the flow thfe algorithm is given in Fig. 1).

Given a comprehensive table, T, having the sanoetsite as Table 1, let T[I; S1, E1]
denote the start and end coordinates of entryHerfirst organism. Similarly, let T[l; S2,
E2] denote the start and end coordinates of entryHe second organism. Let

T_orgl denote the table resulting from sorting &mnincreasing lexicographical order
according to S1, E1 (i.e. according to the stattemd coordinates of the first organism).
Similarly, let T_org2 denote the table resultingnfr sorting T in an increasing
lexicographical order according to S2, E2 (i.ecaading to the start and end coordinates
of the second organism).

Based on the above notation, we can describe thiosh@ogy used in the mapping
phase (see also Fig. 1):

Step 1: Keeping single copy of identical entries

The initial comprehensive table may contain mudtipplentical entries (i.e. entries having
the same S1, E1, S2, E2, and sign values). To &elgmne copy out of these, we
consider first T_org1l (i.e. the table sorted acowydo S1, E1) We scan this table for
identical entries. In case such redundant entre$oaind, we keep a single entry and
remove the rest. The time complexity of this se@(|T|log(|T|)).

Step 2: Removing short entries

The table resulting from Step 1 may often contaiorsentries that one might want to
filter out. Entries whose length in either of tletorganisms is less than a given
threshold (parameter cleanMinLen — see Table 4)ear®ved. The length of the entry in
the first organism is calculated according to S, while taking into account the
genome’s circularity, if applicable. The lengthtibé entry in the second organism is
calculated similarly. The time complexity of thieg is linear in the size of the table

©qT).

Step 3 (optional): Removing Transposable Elements

Transposable elements (TE) are another type oéribat complicates the mapping
process. MAGIC can filter out entries associatéti WEsS, given that the user supplies
the annotations of these elements in each genoneefofmat of the files containing the
information on the TEs is described in Table 2.

Given that the user supplied the annotation offtes, entries in the table that intersect
significantly (more than cleanlSPerc) with a TE discarded. This filtering step can be
done efficiently (in O(nlog(n)+n(m+k)) time, whends the size of the comprehensive
table, m the size of table containing the TE antmmtan the first organism, and k the size
of the table containing the TE annotation in theosel organism). Our strategy here is
similar to merge sort: First, we consider the Tid¢aof the first organism and the T_orgl
table. These two tables are simultaneously scaas@d merge sort, while updating the

amount of intersection between table entries ansl TlEhe genomes are circular, we do
the following correction: For each entry in the Eble we check if it intersects with any
of the “circular” entries - i.e. entries whose eubrdinate is less than their start
coordinate (T[l, S1] > T[l,E1)) - in the compreharmstable. A similar process is done on
the TE table of the second organism and the T_taigl2.

Finally, all entries in the table whose intersett@rcentage with TE segments is larger
than a given threshold (parameter cleanISPeraeaneved.

Step 4 (optional): Removing Viruses

Similar to Step 3, but instead of the TE annotataowirus (or a prophage for
prokaryotes) annotation is used (see the structusevirus file in Table 3). The threshold
for this step is given by parameter cleanProPeddtartime complexity is
O(nlog(n)+n(m+k)), where n is the size of the coeffnsive table, m the size of table
containing the virus annotation in the first organj and k the size of the table containing
the virus annotation in the second organism.

Step 5: Removing overlaps

The table may contain entries that overlap in lmotfanisms. These entries should be
joined into one entry.

We do that by scanning the T_org1l table: For eatty ¢, let J be its successive (in
T_orgl). If J intersects with | in both organisme join them into a single entry and
increase J (J =J + 1). If J intersects with | anlthe first organism, we move to increase
J (J =J+ 1, without joining it to I). If J doestrintersect with I, we increase | (I = 1+1),
and update J accordingly (J = | + 1). Finally,nfrg I is circular (T[l, S1] > T[l, E1]), we
perform in addition a similar check with all thetees in the beginning of the table
T_orgl. The time complexity of a single iteratidrtlas step i<2(|T|log(|T])) and
o(|T|2).

Thisstep isrepeated until no more overlapping entriesin both organisms are found.

Step 6: Clustering

One of the main goals of the mapping phase isdntity the reorder-free segments in the
given genomes. This identification is complicatgdbint mutations, indels, and (in- or
out-) paralogs that might have affected these satgn®vercoming the point mutation
hurdle is done in the preprocessing phase. Howeeating with the other hurdles needs
to be done in the mapping phase. For that, we teelentify segments having the same
orientation in both genomes and potentially eithgulicated or spanned with indels to
cluster them together.

To this end, MAGIC uses a novel definition of “cenative” entries to identify reorder-
free segments. Intuitively, two entries are conteeuf they (or more generally their
duplicates) are successive in both organisms;3ea&lan et. al., PLoS CB, 2006) for
more details.

The calculation of consecutive entries is doneodevis: First, given an entry |, we
identify all its “significant overlaps” in the fitorganism (according to T1_orgl). Two
entries are said to significantly overlap if thieitersection percentage in the given
organism is greater than the value of the parandeiePerc. Similarly, we identify all I's
significant overlaps in the second organism. Finalle calculate the intersection of these
two sets with the help of the C++ STL Set class,(significant overlaps in first and
second organisms). If the intersection contains@es entry, say J, then | and J are
defined as consecutive and are joined together.

The time complexity of this step §(|T|log(|T])) and O(|T|"2).

Step7: Removing Nuisances

Nuisances (or nuisance cross overlaps) are a catmmal hurdle, resulting usually from
the outparalogs biological phenomenon. They cafuserthe clustering algorithm and
cause a wrong estimation of inparalogs.

Nuisances are identified and removed as followstFgiven an entry |, we calculate its
significant overlaps according to the first orgamiGee Step 6). We seek significant
overlaps that are much longer than |, i.e. I's tng less than a given percentage
(parameter orthPerc) of their length. If such aimyeis found in the first organism, we
seek a similar one in treecond organism. If two such entries are found, | is cdeed a
nuisance and is discarded.

The time complexity of this step §(|T|log(|T])) and O(|T|"2).

Step8: Identifying Inparalogs

Identifying inparalogs is required to quantify #a@ount of duplications that occurred
since the divergence of the organisms from theianeestor. It prevents also the
inparalogs from confusing the clustering algorithm.

Inparalogs are identified similar to nuisances it exception that we require them to
be much shorter than one of their significant cmgslonly in a single organism (and not
in both).

The time complexity of this step §(|T|log(|T])) and O(|T|"2).

Steps 6, 7 and 8 arerepeated until conver gence of the table.

Step 9: Removing Final Conflicts

At this stage the table might still contain sigeafint overlapping entries for which
paralogs and orthologs cannot be determined (bedhasoverlapping entries have
similar lengths). Such significant overlaps arenefd to as conflicts. Conflicts might
result, e.g., from unidentified TEs that have sélfy duplicated in the genome. Hence,
one needs to remove these conflicts.

Removing these entries is done as follows: For eatty I, if it has significant overlaps
in the first organism (calculated over T_orgl) rhiee entry |, and the significant
overlaps are removed from the table. A similar pescis performed in the second
organism (over T_org2).

The time complexity of this step §(|T|log(|T])) and O(|T|"2).

Step 10: Removing Final (non-Conflict) Overlaps

At this stage, the table contains no significargrtaps, however, it might still contain
some (non-significant) overlaps. To calculate cagerstatistics of the genomes
correctly, these overlaps need to be removed.i$ldsne by scanning the tables T_orgl
and T_org2 and resizing entries that are found/eslap in either of the two organisms.
The time complexity of this step §(|T|log(|T])) and O(|T|"2).

Softwar e description:

The mapping application has two interfaces: 1)rmmand line and 2) a Java GUI.

1) We describe the parameters used in the comniamgdrsion:

mappingPhase {tableFile} {numOfRowsInTable} {outpile} {outputTracePath}
{cleanISPerc} {cleanProPerc} {cleanMinLen} {dupPérorthPerc} {orglDataFile}
{org2DataFile} {deletedParalogOrglFile} {deletedRaygOrg2File} [TEFilel]
[TEFile2] [ProphagesFilel] [ProphagesFile2]

tableFile — a string (without white spaces) — Théhgo the input comprehensive
table file.

numOfRowsInTable — an unsigned int — The numbéinet of the
comprehensive table file (not including the hedote).

outputFile— a string (without white spaces) — Th#éhgo the output file
containing the reorder-free segments.

outputTracePath — a string (without white spaceBhe-path to the trace file.
cleanISPerc — a double — The percentage thresbofdtéring out TEs (see Step
3 above).

cleanProPerc — a double — The percentage thre&brdittering out viruses (see
Step 4 above).

cleanMinLen — an unsigned long — The length thrkestar filtering out short
entries (see Step 2 above).

dupPerc — a double — The percentage thresholdetermining significant
overlaps (see Step 6 above).

orthPerc — a double — The percentage thresholdistinguishing between
paralogs and orthologs (see Steps 7 and 8).

OrglDataFile — a string (without white spaces) -e phth to the input properties
file of the first organism.

Org2DataFile — a string (without white spaces) -e phth to the input properties
file of the second organism.

deletedParalogOrglFile — a string (without whitacgs) — The path to the output
file to print the deleted entries from the ‘Remd&aralogs’ step in organism 1.
deletedParalogOrg2File — a string (without whitacgs) — The path to the output
file to print the deleted entries from the ‘Remd&aralogs’ step in organism 1.
TEFilel (optional) — a string (without white spaceslhe path to the input file
that contains the TE description in the first oligam

TEFile2 (optional) — a string (without white spaceslhe path to the input file
that contains the TE description in the second rasga.

ProphagesFilel (optional) — a string (without wisip@ces) — The path to the file
that contains the viruses (or prophages) descniptighe first organism.
ProphagesFile2 (optional) — a string (without wisip@ces) — The path to the file
that contains the viruses (or prophages) descniptidhe second organism.

2) When the application is initiated through theal&Ul, these parameters can be set
through GUI (refer to the GUI's documentations ifimore details).

Software design:

Diagram 1 describes the relationships between #ia olasses used in the code.
Here we describe these classes in more detail:

Genome:
This class holds the information and the propeufes genome.
Currently, the following properties are associatedach genome:
* The genome’s length in nucleotides.
* The genome’s name.
* The genome’s circularity.

Entry:
This class contains the fields required to desaitbentry in the table T (see Section

Description of the Algorithm and Table 1).
Each entry has the following information:
* Anindicator as whether the entry is in use or not.
* The (unique) label of the entry.
* The start and end coordinates of the segment®itwith organisms (previously
referred to as S1, E1, S2, E2).
* The entry’s sign: ‘+’ denotes that the two segmératge an identical orientation,
and ‘- denotes that the two segments have a redeysentation.

Table:
This class contains the fields required to holdhadltable’s information:
* The entries of the table (of type Entryf[]).
* The number of entries in the table (table’s length)
* The properties of the first genome (of type Genome)
* The properties of the second genome (of type Gehome

In addition, the Table class provides all the fiorality required in the mapping phase.

compare_entries_1:

This class has two purposes.

The first is to enable sorting of the table acamgdio the first organism, and is required
by the C++ STL (Standard template library) sortchion.

The second is to ensure that only a single comndantry is inserted into an instance of
the STL set class.

compare_entries_2:
The purpose of this class is to enable sortindabke according to the second organism
and is required by the C++ STL (Standard tempiatady) sort function.

Softwar e dependencies:

* STL (Standard Template Library) library.

e.coli.start e.coli.end

16728
16760
19790
19790
19793
19794
19795
19795
19795
19795
19795
19795
19795

19802
17055
20553
20565
20559
20453
20533
20549
20550
20555
20559
20559
20559

length s.flexneri_2d8tart s.flexneri_2457t.end

3075
296
764
776
767
660
739
755
756
761
765
765
765

315
032306
16@650
3849052
053802
168464
393040
48@585
18@313
774278
75896
240535
793335

Table 1

Start
5635
6360
12102
12752
18663
25952
36705
48032

End
5670
6656
12221
12788
19441
25987
37483
48160

.Table 2

Start
15401
48627
195557
238088
238511
239101

Table 3

18452
2039621
2161413
4389827
1054568
3169123
3393778
4481305
2187068
1775038
276660
1241299
1796099

End
15610
49106
199039
238294
238780
239415

length.1 sigitentifier

3075
316
764
776
767
660
739
721
756
761

657
765
765

A L L S S

+

KIS35-4
G683
G786
G1247
G1426
G956
G1016
G1216
G802
G619
BP713
G1463
BP480

Parameter Used for In Default vald
cleanMinLen| removing short entries Step 2 200
cleanISPerc | removing transposable elements StepB 4 O
cleanProPerg¢ removing prophages Step 4 0.4
orthPerc identifying orthologs Step7 | 05
and 8

dupPerc fnding duplicates Setps 519 0.5

Table 4

Comprehensive table
Removing duplicated entries

Removing entries with short segments

Removing TEs

Removing Prophages

Iteratively til
convergence

Removing Overlaps

I
al

Clustering

. . Iteratively til
Removing Nuisances convergence

Removing Paralogs

Removing Final Conflicts

(10)i Removing Final Overlaps

Mapping table

Figure 1

e

Class Diagram

1.*

Entry PN Table VS Genome

LS}

————

compare_entries_2 compare_entries_1

Diagram 1

