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Background: 
 
Genomes undergo changes that can dramatically affect the properties of the organisms. 
These changes, referred to as mutations, can result in evolutionary more fit organisms, or 
cause fatal abnormalities. Mutations can be coarsely divided into two groups:  

• Point mutations, affecting single nucleotides.  
• Large-scale mutations, affecting long genomic segments.  

Whereas point mutations have been well studied and characterized (both on the 
biomechanical level and the statistical-algorithmic level), investigating large-scale 
mutations is more complicated as it requires sequencing and comparing whole genomes. 
Yet, this comparison of the whole genomes, referred to as comparative mapping, is 
important for evolutionary, genetic, and genome rearrangement studies. Here, one is 
usually interested in investigating the relation between the genomic segments to establish 
their evolutionary origin:  
Are the segments orthologous, and hence were inherited from the organisms’ most recent 
common ancestor? Are they paralogs, and hence were duplicated from an ancestral 
segment? Did the segments undergo reordering? Were the segments deleted or inserted 
and — if so — how (insertion sequence, prophage, or horizontal gene transfer)? 
 
Most of the pioneering studies considered the problem of comparative mapping over sets 
of genes instead of arbitrary genomic segments. These methods start, usually, by 
calculating an all-against-all alignment of common sets of genes (a preprocessing phase), 
and then, in a second phase, use clustering techniques to predict operons or collinear 
blocks. Recently, comparative mapping methods over arbitrary genomic segments were 
developed. The preprocessing phase in these methods consists of searching for similar 
genomic segments — referred to as hits, markers, or anchors (usually performed by a fast 
local alignment procedure). Then, in the mapping phase, a clustering procedure is applied 
to the output of the first phase. Examples for fast seed-based preprocessing phases 
include BLASTZ and CHAOS, in which the seeds are allowed to contain degeneracy, as 
well as that of Mauve, which searches for exact and unique matches. Examples for 
mapping phases include CHAIN-NET, FISH, GRIMM-Synteny, Mauve (as well as GRIL 
— its predecessor), and SLAGAN. CHAIN-NET and GRIMM-Synteny use the distance 
between anchors as a criterion for clustering (and hence referred to as distance-based 
mapping methods). Mauve and SLAGAN rely on solving (different) optimization 
problems to prune anchors and to define the mapping. SLAGAN prunes anchors by 
introducing various gap penalties for discriminating between different subsets. Finally, 
FISH is based on a statistical model for anchor clustering.  
 



In this project, MAGIC (a rearrangement of Integrative and Accurate Comparative 
Genome Mapping), which is a new approach for comparative mapping (Swidan et. al., 
PLoS CB, 2006), is implemented in C++. Along with the C/C++ implementation of the 
pre-processing phase, and the Java graphical user interface (GUI), this tool provides an 
accurate, fast, and user friendly program for comparing genomes. 
 
 
Project Relevancy 
 
MAGIC’s clustering approach is based on a new definition of “consecutive homologous 
segments” which relies on a biologically intuitive ordering of similar segments. It enables 
a better handling of duplications in general and allows to adequately address the problem 
of “nuisance cross overlaps”, i.e., misleading similarities between duplications that 
occurred before the most recent common ancestor, in particular. Nuisance cross overlaps 
can introduce significant artifacts in the mapping and, to the best of our knowledge, were 
not taken explicitly into account before. MAGIC is also robust with respect to both its 
parameters’ values and the initial set of anchors. It is capable of modifying and refining 
the mapping induced from the anchors, and even recognizing and reassigning false 
orthologs in the initial anchor set itself. Furthermore, MAGIC is scalable and can be 
applied to distantly related pairs as well as to large genomes. Finally, MAGIC is 
explicitly designed to handle circular genomes (by considering the last and first 
nucleotides to be successive). MAGIC’s output consists of detailed coverage statistics of 
the genomes and of several tables including a one-to-one table describing the reorder-free 
segments. 
 
By applying MAGIC to bacterial genomes and analyzing the results,  Swidan et. al. 
(2006) showed  that lateral transfer and large deletions affect bacteria significantly more 
than duplications. In addition, by applying statistical tests to these results, they 
surprisingly showed that the breakpoint distribution fits well to the uniform distribution 
in most of the compared pairs. 
 
For more information we refer the reader to (Swidan et. al., PLoS CB, 2006). 
 
 
Description of the Algorithm: 
 
The mapping phase’s input constitutes of a comprehensive set of maximal similar 
segments between two given genomes. Practically, this set is represented as a table (see 
Table 1 in the end of this document). This table is generated in the preprocessing phase. 
A thorough description of its generation is given in the preprocessing phase 
documentations. 
 
To describe MAGIC’s methodology for comparing two given genomes, we present first 
the following notation (an overview of the flow of the algorithm is given in Fig. 1). 
 



Given a comprehensive table, T, having the same structure as Table 1, let T[I; S1, E1] 
denote the start and end coordinates of entry I in the first organism. Similarly, let T[I; S2, 
E2] denote the start and end coordinates of entry I in the second organism. Let 
T_org1 denote the table resulting from sorting T in an increasing lexicographical order 
according to S1, E1 (i.e. according to the start and end coordinates of the first organism).  
Similarly, let T_org2 denote the table resulting from sorting T in an increasing 
lexicographical order according to S2, E2 (i.e., according to the start and end coordinates 
of the second organism). 
 
Based on the above notation, we can describe the methodology used in the mapping 
phase (see also Fig. 1): 
 
 
Step 1: Keeping single copy of identical entries 
 
The initial comprehensive table may contain multiple identical entries (i.e. entries having 
the same S1, E1, S2, E2, and sign values). To keep only one copy out of these, we 
consider first T_org1 (i.e. the table sorted according to S1, E1) We scan this table for 
identical entries. In case such redundant entries are found, we keep a single entry and 
remove the rest. The time complexity of this step is O(|T|log(|T|)). 
 
 
Step 2: Removing short entries 
 
The table resulting from Step 1 may often contain short entries that one might want to 
filter out. Entries whose length in either of the two organisms is less than a given 
threshold (parameter cleanMinLen – see Table 4) are removed. The length of the entry in 
the first organism is calculated according to S1, E1, while taking into account the 
genome’s circularity, if applicable. The length of the entry in the second organism is 
calculated similarly. The time complexity of this step is linear in the size of the table 
(O(|T|)). 
 
 
Step 3 (optional): Removing Transposable Elements 
 
Transposable elements (TE) are another type of noise that complicates the mapping 
process.  MAGIC can filter out entries associated with TEs, given that the user supplies 
the annotations of these elements in each genome. The format of the files containing the 
information on the TEs is described in Table 2. 
Given that the user supplied the annotation of the TEs, entries in the table that intersect 
significantly (more than cleanISPerc) with a TE are discarded. This filtering step can be 
done efficiently (in O(nlog(n)+n(m+k)) time, where n is the size of the comprehensive 
table, m the size of table containing the TE annotation in the first organism, and k the size 
of the table containing the TE annotation in the second organism). Our strategy here is 
similar to merge sort: First, we consider the TE table of the first organism and the T_org1 
table. These two tables are simultaneously scanned as in merge sort, while updating the 



amount of intersection between table entries and TEs. If the genomes are circular, we do 
the following correction: For each entry in the TE table we check if it intersects with any 
of the “circular” entries  - i.e. entries whose end coordinate is less than their start 
coordinate (T[I, S1] > T[I,E1)) - in the comprehensive table. A similar process is done on 
the TE table of the second organism and the T_org2 table.  
 
Finally, all entries in the table whose intersection percentage with TE segments is larger 
than a given threshold (parameter cleanISPerc) are removed.  
 
 
Step 4 (optional): Removing Viruses 
 
Similar to Step 3, but instead of the TE annotation, a virus (or a prophage for 
prokaryotes) annotation is used (see the structure of a virus file in Table 3). The threshold 
for this step is given by parameter cleanProPerc and its time complexity is 
O(nlog(n)+n(m+k)), where n is the size of the comprehensive table, m the size of table 
containing the virus annotation in the first organism, and k the size of the table containing 
the virus annotation in the second organism. 
 
 
Step 5: Removing overlaps 
 
The table may contain entries that overlap in both organisms. These entries should be 
joined into one entry. 
We do that by scanning the T_org1 table: For each entry I, let J be its successive (in 
T_org1). If J intersects with I in both organisms, we join them into a single entry and 
increase J (J = J + 1). If J intersects with I only in the first organism, we move to increase 
J (J = J + 1, without joining it to I). If J does not intersect with I, we increase I (I = I+1), 
and update J accordingly (J = I + 1). Finally, if entry I is circular (T[I, S1] > T[I, E1]), we 
perform in addition a similar check with all the entries in the beginning of the table 
T_org1. The time complexity of a single iteration of this step is Ω(|T|log(|T|))  and 
O(|T|^2). 
 
This step is repeated until no more overlapping entries in both organisms are found. 
 
 
Step 6: Clustering 
 
One of the main goals of the mapping phase is to identify the reorder-free segments in the 
given genomes. This identification is complicated by point mutations, indels, and (in- or 
out-) paralogs that might have affected these segments. Overcoming the point mutation 
hurdle is done in the preprocessing phase. However, dealing with the other hurdles needs 
to be done in the mapping phase. For that, we seek to identify segments having the same 
orientation in both genomes and potentially either duplicated or spanned with indels to 
cluster them together. 



To this end, MAGIC uses a novel definition of “consecutive” entries to identify reorder-
free segments. Intuitively, two entries are consecutive if they (or more generally their 
duplicates) are successive in both organisms; see (Swidan et. al., PLoS CB, 2006) for 
more details.  
The calculation of consecutive entries is done as follows: First, given an entry I, we 
identify all its “significant overlaps” in the first organism (according to T1_org1). Two 
entries are said to significantly overlap if their intersection percentage in the given 
organism is greater than the value of the parameter dupPerc. Similarly, we identify all I’s 
significant overlaps in the second organism. Finally, we calculate the intersection of these 
two sets with the help of the C++ STL Set class (i.e., significant overlaps in first and 
second organisms). If the intersection contains a single entry, say J, then I and J are 
defined as consecutive and are joined together.  
The time complexity of this step is Ω(|T|log(|T|)) and O(|T|^2). 
 
 
Step7: Removing Nuisances 
 
Nuisances (or nuisance cross overlaps) are a computational hurdle, resulting usually from 
the outparalogs biological phenomenon. They can confuse the clustering algorithm and 
cause a wrong estimation of inparalogs.  
Nuisances are identified and removed as follows: First, given an entry I, we calculate its 
significant overlaps according to the first organism (see Step 6). We seek significant 
overlaps that are much longer than I, i.e. I’s length is less than a given percentage 
(parameter orthPerc) of their length. If such an entry is found in the first organism, we 
seek a similar one in the second organism. If two such entries are found, I is considered a 
nuisance and is discarded. 
The time complexity of this step is Ω(|T|log(|T|)) and O(|T|^2). 
 
 
Step8: Identifying Inparalogs 
 
Identifying inparalogs is required to quantify the amount of duplications that occurred 
since the divergence of the organisms from their cenancestor. It prevents also the 
inparalogs from confusing the clustering algorithm. 
Inparalogs are identified similar to nuisances with the exception that we require them to 
be much shorter than one of their significant overlaps only in a single organism (and not 
in both). 
The time complexity of this step is Ω(|T|log(|T|)) and O(|T|^2). 
 
Steps 6, 7 and 8 are repeated until convergence of the table. 
 
 
 
 
 
 



Step 9: Removing Final Conflicts 
 
At this stage the table might still contain significant overlapping entries for which 
paralogs and orthologs cannot be determined (because the overlapping entries have 
similar lengths). Such significant overlaps are referred to as conflicts. Conflicts might 
result, e.g., from unidentified TEs that have selfishly duplicated in the genome. Hence, 
one needs to remove these conflicts. 
Removing these entries is done as follows: For each entry I, if it has significant overlaps 
in the first organism (calculated over T_org1), then the entry I, and the significant 
overlaps are removed from the table. A similar process is performed in the second 
organism (over T_org2). 
The time complexity of this step is Ω(|T|log(|T|)) and O(|T|^2). 
 
 
Step 10: Removing Final (non-Conflict) Overlaps 
 
At this stage, the table contains no significant overlaps, however, it might still contain 
some (non-significant) overlaps. To calculate coverage statistics of the genomes 
correctly, these overlaps need to be removed. This is done by scanning the tables T_org1 
and T_org2 and resizing entries that are found to overlap in either of the two organisms. 
The time complexity of this step is Ω(|T|log(|T|)) and O(|T|^2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Software description: 
 
The mapping application has two interfaces: 1) a command line and 2) a Java GUI. 
 
1) We describe the parameters used in the command line version: 
 
mappingPhase {tableFile} {numOfRowsInTable} {outputFile} {outputTracePath} 
{cleanISPerc} {cleanProPerc} {cleanMinLen} {dupPerc} {orthPerc} {org1DataFile} 
{org2DataFile} {deletedParalogOrg1File} {deletedParalogOrg2File} [TEFile1]  
[TEFile2]  [ProphagesFile1]  [ProphagesFile2] 
 

• tableFile – a string (without white spaces) – The path to the input comprehensive 
table file. 

• numOfRowsInTable –  an unsigned int – The number of lines of the 
comprehensive table file (not including the header line). 

• outputFile– a string (without white spaces) – The path to the output file 
containing the reorder-free segments. 

• outputTracePath – a string (without white spaces) – The path to the trace file. 
• cleanISPerc – a double – The percentage threshold for filtering out TEs (see Step 

3 above). 
• cleanProPerc – a double – The percentage threshold for filtering out viruses (see 

Step 4 above). 
• cleanMinLen – an unsigned long – The length threshold for filtering out short 

entries (see Step 2 above). 
• dupPerc – a double – The percentage threshold for determining significant 

overlaps (see Step 6 above). 
• orthPerc – a double – The percentage threshold for distinguishing between 

paralogs and orthologs (see Steps 7 and 8). 
• Org1DataFile – a string (without white spaces) – The path to the input properties 

file of the first organism. 
• Org2DataFile – a string (without white spaces) – The path to the input properties 

file of the second organism. 
• deletedParalogOrg1File – a string (without white spaces) – The path to the output 

file to print the deleted entries from the ‘Remove Paralogs’ step in organism 1. 
• deletedParalogOrg2File – a string (without white spaces) – The path to the output 

file to print the deleted entries from the ‘Remove Paralogs’ step in organism 1. 
• TEFile1 (optional) – a string (without white spaces) – The path to the input file 

that contains the TE description in the first organism. 
• TEFile2 (optional) – a string (without white spaces) – The path to the input file 

that contains the TE description in the second organism. 
• ProphagesFile1 (optional) – a string (without white spaces) – The path to the file 

that contains the viruses (or prophages) description in the first organism. 
• ProphagesFile2 (optional) – a string (without white spaces) – The path to the file 

that contains the viruses (or prophages) description in the second organism. 
 



2) When the application is initiated through the Java GUI, these parameters can be set 
through GUI (refer to the GUI’s documentations for more details). 
 
 
Software design: 
 
Diagram 1 describes the relationships between the main classes used in the code. 
Here we describe these classes in more detail: 
 
Genome: 
This class holds the information and the properties of a genome. 
Currently, the following properties are associated to each genome: 

• The genome’s length in nucleotides. 
• The genome’s name. 
• The genome’s circularity. 

 
Entry: 
This class contains the fields required to describe an entry in the table T (see Section 
Description of the Algorithm and Table 1). 
Each entry has the following information: 

• An indicator as whether the entry is in use or not. 
• The (unique) label of the entry. 
• The start and end coordinates of the segments in the two organisms (previously 

referred to as S1, E1, S2, E2). 
• The entry’s sign: ‘+’ denotes that the two segments have an identical orientation, 

and ‘-‘ denotes that the two segments have a reversed orientation. 
 
Table: 
This class contains the fields required to hold all the table’s information: 

• The entries of the table (of type Entry[]). 
• The number of entries in the table (table’s length). 
• The properties of the first genome (of type Genome). 
• The properties of the second genome (of type Genome). 

 
In addition, the Table class provides all the functionality required in the mapping phase.  
 
compare_entries_1: 
This class has two purposes. 
The first is to enable sorting of the table according to the first organism, and is required 
by the C++ STL (Standard template library) sort function. 
The second is to ensure that only a single copy of an entry is inserted into an instance of 
the STL set class. 
 
compare_entries_2: 
The purpose of this class is to enable sorting the table according to the second organism 
and is required by the C++ STL (Standard template library) sort function. 



Software dependencies: 
 

• STL (Standard Template Library) library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



e.coli.start   e.coli.end   length   s.flexneri_2457t.start   s.flexneri_2457t.end   length.1   signs   identifier 
  16728         19802        3075                15378                          18452                 3075        +       KIS35-4 
  16760         17055        296                  2039306                      2039621             316          +       G683 
  19790         20553        764                  2160650                      2161413             764          +       G786 
  19790         20565        776                  4389052                      4389827             776          -        G1247 
  19793         20559        767                  1053802                      1054568             767          +       G1426 
  19794         20453        660                  3168464                      3169123             660          -        G956 
  19795         20533        739                  3393040                      3393778             739          +       G1016 
  19795         20549        755                  4480585                      4481305             721          +       G1216 
  19795         20550        756                  2186313                      2187068             756           -       G802 
  19795         20555        761                  1774278                      1775038             761           -       G619 
  19795         20559        765                  275896                        276660               765           +      BP713 
  19795         20559        765                  1240535                      1241299             765           +      G1463 
  19795         20559        765                  1795335                      1796099             765           +      BP480 
    .               .             .                      .                             .                   .            .        .       
    .               .             .                      .                             .                   .            .        .       
 

Table 1 
 
 
 
 

Start End 
5635 5670 
6360 6656 
12102 12221 
12752 12788 
18663 19441 
25952 25987 
36705 37483 
48032 48160 
    .           . 
    .           . 

Table 2 
       
 
 

Start  End 
15401  15610 
48627  49106 
195557 199039 
238088 238294 
238511 238780 
239101 239415 
  .           . 
  .           . 

 
Table 3 

 
 
 
 



Parameter Used for In Default value 
cleanMinLen removing short entries Step 2 200 
cleanISPerc removing transposable elements Step 3 0.4 
cleanProPerc removing prophages Step 4 0.4 
orthPerc identifying orthologs Step 7 

and 8 
0.5 

dupPerc fnding duplicates Setps 5-9 0.5 
 

Table 4 
 
 
 
 
 

 
 

Figure 1 
 
 
 
 
 
 
 
 



 
 

Class Diagram 
 
 

 
 

Diagram 1 


